
Writing web service
applications in Perl for

HP Service Manager 9.X and BP4SM
9.X

Dr Christopher Vance and Greg Baker

August 2012

i

Contents

1 Agenda 1

2 SOAP Introduction 3
2.1 What is SOAP/WSDL? . 4
2.2 SOAP . 10
2.3 WSDL . 16
2.4 How do I access the Service Manager SOAP service? 26
2.5 Exercise . 28

3 SOAP in Perl 29
3.1 What options are there for SOAP/WSDL client-side in Perl? 30
3.2 Building a Perl client . 33
3.3 SOAP::Lite — putting stuff in . 34
3.4 SOAP::SOM — getting stuff back out 41
3.5 SOAP::Data — calling parameters . 48
3.6 Exercise . 50

4 HP Service Manager Tickets 51
4.1 Contacts and operators . 52
4.2 Interaction tickets and their lifecycle 55
4.3 Incident tickets and their lifecycle . 62
4.4 Change tickets and their lifecycle . 64
4.5 Exercise . 67

5 Creating Tickets 68
5.1 Common fields . 69
5.2 Create skeleton . 71
5.3 What an interaction ticket needs . 76

ii

5.4 What an incident ticket needs . 77
5.5 What a change ticket needs . 78
5.6 What ticket should I use? . 79
5.7 Exercise . 83

6 Other Tickets and Tools 84
6.1 Service Catalogue . 85
6.2 Configuration Items . 86
6.3 Creating a new web service interface 87
6.4 Creating a mailer interface . 90

7 Techniques 98
7.1 Performance . 99
7.2 Tables . 102

Index 106

Page iii of 108

Page iv of 108

1
Agenda

1

Agenda

Agenda

• SOAP Introduction

• SOAP in Perl

• HP Service Manager Tickets

• Creating Tickets

• Other Tickets and Tools

Notes.

• Introduction.

• Fire and emergency.

• Locations of restrooms.

• Break location and times.

Page 2 of 108

2
SOAP Introduction

3

2.1. WHAT IS SOAP/WSDL?

2.1 What is SOAP/WSDL?

SOAP/WSDL

Like many parts of IT, SOAP and WSDL fit into a universe
of dependencies.

RPC Remote Procedure Call

XML Extensible Markup Language

HTTP Hypertext Transfer Protocol

SOAP Simple Object Access Protocol

WSDL Web Services Definition (or Description) Language

Notes.

Page 4 of 108

CHAPTER 2. SOAP INTRODUCTION

RPC

Remote Procedure Call is any mechanism used for a client
program on one machine to invoke (or call) a procedure on
another machine.
To make it work, the ends have to agree

• What procedures are available

• What arguments does each procedure take for input and
output

• How are arguments and the choice of procedure ex-
pressed

• Where should information be sent to cause invocation

The results are invariably returned to the client using the
same formats and methods as the invocation.

Notes.
A number of RPC mechanisms are used in the real world. Some of the earliest
ones were originally motivated by the need to share files.
In 1984 Sun invented Sun RPC, mostly used these days for NFS on Unix and
Linux systems.
In the same year CCITT (now called ITU-T) described ASN.1, still used for LDAP,
SNMP, cryptographic keys, etc.
In the mid 1980s Apollo Computer (later bought by HP) invented NCS, which
which later became DCE, used by Microsoft DCOM and ODBC.
In the late 1980s, IBM invented SMB, now called CIFS and most heavily used by
Microsoft systems, and implemented by the free Samba software.
The named systems all use binary encodings to make transfer efficient, at the cost
of interoperability. Some of these encodings are at least partially self-describing,
while others are not.

Page 5 of 108

2.1. WHAT IS SOAP/WSDL?

XML

The Extensible Markup Language attempts to provide a self-
describing textual view of data using nested tags. Typical use
is within disk files.
<person><name>Baz</name><height unit="metre">2.0
</height><moustache/></person>

It comes from the same heritage as HTML, used for web
pages.
XML does not require the use of whitespace for indentation
or readability, since it is intended primary for machine pars-
ing.

Notes.
XML enables better interoperability at the expense of verbosity.
Tags are expressed within angle brackets. They are case-sensitive, nest strictly,
and must be explicitly closed. Content between the open and close tag may
include nested tags and character data.
An opening tag may include attributes (see unit within height above).
A closing tag starting with </ must appear somewhere following the opening tag.
A tag ending with />, such as <moustache/> above, is self-closing. It may include
attributes, but cannot contain other tags or non-tag data.
Whitespace may separate the / from its tag name, whether in </ or /> form.

Page 6 of 108

CHAPTER 2. SOAP INTRODUCTION

XML example

<?xml version="1.0" encoding="UTF-8"?>
<Envelope>
<Body>
<RetrieveIncidentKeysListRequest>
<model>
<keys />
<instance>
<IncidentID />

</instance>
</model>

</RetrieveIncidentKeysListRequest>
</Body>

</Envelope>

Notes.
This example is editted down from real XML used with SOAP and HP Service
Manager. The original uneditted XML includes namespaces and attributes, and
omits all the indentation and newlines.

Page 7 of 108

2.1. WHAT IS SOAP/WSDL?

HTTP

The Hyper Text Transfer Protocol was invented for the world-
wide web. A request includes

• a command line, starting with GET, POST, etc.

• a number of header lines, each effectively a name, fol-
lowed by a colon (:), whitespace, and content to end-
of-line

• one empty line

• text or binary content

The response is returned in the same similar format.
Apart from the single command line, the file format, includ-
ing header lines and content separation is derived from the
format used for e-mail.

Notes.

Page 8 of 108

CHAPTER 2. SOAP INTRODUCTION

HTTP example

POST /SM/7/ws HTTP/1.1
Host: bp4smdemo.hpsweducation.com:13080
Accept: text/xml
Accept: multipart/*
Accept: application/soap
Content-Length: 546
Content-Type: text/xml; charset=utf-8
SOAPAction: "#Retrieve"

<?xml version="1.0" encoding="UTF-8"?><soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" xmlns:xsd="http://www.w3.org/2001/XMLSchema" soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"><soap:Body><RetrieveIncidentKeysListRequest xmlns="http://bp4smdemo.hpsweducation.com:13080/SM/7"><model><keys /><instance><IncidentID /></instance></model></RetrieveIncidentKeysListRequest></soap:Body></soap:Envelope>

Most of the (XML) content disappears off the end of a single
long line.

Notes.
The client program has a choice between

POST http://bp4smdemo.hpsweducation.com:13080/SM/7/ws HTTP/1.1

and

POST /SM/7/ws HTTP/1.1
Host: bp4smdemo.hpsweducation.com:13080

Both have the same effect.

Page 9 of 108

2.2. SOAP

2.2 SOAP

SOAP

The Simple Object Access Protocol provides a way to express
remote procedure call. It is an XML-based language.
Service Manager uses SOAP v1.1.

• The request and its arguments are serialized into an
XML document.

• The request document is passed via an HTTP POST
action to the server.

• The server deserializes the XML, performs the requested
procedure, and serializes the results into XML.

• The response document is passed back to the client as
the result of the HTTP POST action.

• The client deserializes the response XML.

Notes.
The HTTP headers required for SOAP with HP Service Manager include

• SOAPAction

• Content-Length

Omitting either of these, or incorrect values of them, will cause HP SM to return
a failure or fault, rather than performing the requested service.

Page 10 of 108

CHAPTER 2. SOAP INTRODUCTION

SOAP request

The XML part of a real SOAP request is typically a single line.
Even with newlines put in to aid legibility, the full content
does not fit on a slide, so see the course notes for the full
content.
POST http://bp4smdemo.hpsweducation.com:13080/SM/7/ws HTTP/1.1
Authorization: Basic ...
Content-Length: 546
Content-Type: text/xml;charset=utf-8
SOAPAction: "RetrieveKeysList"

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" xmlns:xsd="http://www.w3.org/2001/XMLSchema" soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<RetrieveIncidentKeysListRequest xmlns="http://bp4smdemo.hpsweducation.com:13080/SM/7">
<model><keys/><instance><IncidentID/></instance></model>

</RetrieveIncidentKeysListRequest>
</soap:Body>

</soap:Envelope>

Notes.
Note that the SOAP request body contains a tag ending with Request. This is a
convention followed by HP Service Manager, not a requirement of SOAP per se.
We show the request over several slides, and several pages in the course notes, to
emphasize different parts.
The good news is that most of the material in any SOAP request you deal with
is likely to be boilerplate generated by the Perl modules you’ll use.

Page 11 of 108

2.2. SOAP

SOAP request

...

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>
...

</soap:Body>
</soap:Envelope>

Notes.
The xmlns attributes specify XML namespaces which define tags available in a
document.
This slide shows the Envelope tag and its attributes.

Page 12 of 108

CHAPTER 2. SOAP INTRODUCTION

SOAP request

...

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope ...>
<soap:Body>
<RetrieveIncidentKeysListRequest

xmlns="http://bp4smdemo.hpsweducation.com:13080/SM/7">
<model>
<keys />
<instance>
<IncidentID />

</instance>
</model>

</RetrieveIncidentKeysListRequest>
</soap:Body>

</soap:Envelope>

Notes.
This slide shows the body of the request.
This request returns the keys (IncidentID) for all Incident tickets.
This slide shows that the xmlns attribute can be use in more than one tag (pre-
ceding ones were on the Envelope tag).

Page 13 of 108

2.2. SOAP

SOAP response

Here is the response to the preceding request.
HTTP/1.1 200 OK
Content-Length: 766
Content-Type: text/xml;charset=utf-8
Set-Cookie: ...

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<RetrieveIncidentKeysListResponse message="Success" query="" returnCode="0" schemaRevisionDate="2011-12-04" schemaRevisionLevel="1" status="SUCCESS" xmlns="http://schemas.hp.com/SM/7" xmlns:cmn="http://schemas.hp.com/SM/7/Common" xmlns:xmime="http://www.w3.org/2005/05/xmlmime" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://schemas.hp.com/SM/7 http://bp4smdemo.hpsweducation.com:13080/SM/7/Incident.xsd">
<keys><IncidentID type="String">IM10420</IncidentID></keys>
<keys><IncidentID type="String">IM10422</IncidentID></keys>

</RetrieveIncidentKeysListResponse>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Notes.
Just as the tag within Body ends with Response. Again, this is a HP Service
Manager convention not a SOAP requirement.
Please note that the tags for the request and response are almost always going to
differ by necessity of holding different internal structures.

Page 14 of 108

CHAPTER 2. SOAP INTRODUCTION

SOAP response

...

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<RetrieveIncidentKeysListResponse

message="Success"
query=""
returnCode="0"
schemaRevisionDate="2011-12-04"
schemaRevisionLevel="1"
status="SUCCESS"
xmlns="http://schemas.hp.com/SM/7"
xmlns:cmn="http://schemas.hp.com/SM/7/Common"
xmlns:xmime="http://www.w3.org/2005/05/xmlmime"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://schemas.hp.com/SM/7 http://bp4smdemo.hpsweducation.com:13080/SM/7/Incident.xsd">

...
</RetrieveIncidentKeysListResponse>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Notes.
The response includes a bunch of xmlns attributes, as well as some additional
information.
Just as the request message is mostly boilerplate assembled by the Perl mod-
ules you’ll be using, the response message is also mostly boilerplate which is
understood and deconstructed by the same Perl modules.

Page 15 of 108

2.3. WSDL

2.3 WSDL

WSDL

WSDL is the Web Services Definition Language (v1.1) or Web
Services Description Language (v2.0), and provides a way
to express the remote procedure calls available at a service
endpoint, and the arguments required of each call. It is an
XML-based language.
HP Service Manager, like many implementations, uses WSDL
1.1, perhaps at least in part because the Business Process
Execution Language, BPEL, only supports 1.1.
We won’t show a complete WSDL example, but there
will be excerpts showing each of the components from the
IncidentManagement.wsdl file used by Service Manager.

Notes.
Just as with SOAP, you won’t be needing to write a WSDL file, nor even read one
very often. Consider it more useful as a reference. The tags used are supposed
to be informative, as in programming languages like Java where convention is to
use phrases when constructing names for modules, packages, and procedures.

Page 16 of 108

CHAPTER 2. SOAP INTRODUCTION

WSDL components

The components in a WSDL 1.1 file include

• types, describing the simple and complex data structures
accompanying each request and response

• message, describes a single request or response message

• operation, describes a single remote procedure call, and
combines input and output, being one message from
client to server, and one message from server to client

• portType, being a collections of operations

• binding, being a specification of the transport protocols
of the operations in a portType

• port, being the a service endpoint, typically a URL, used
by a binding

• service, being a collection of ports

Notes.

Page 17 of 108

2.3. WSDL

WSDL types

<types>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" attributeFormDefault="unqualified" elementFormDefault="qualified" targetNamespace="http://schemas.hp.com/SM/7" version="2011-12-04 Rev 1" xmlns="http://schemas.hp.com/SM/7" xmlns:cmn="http://schemas.hp.com/SM/7/Common" xmlns:xmime="http://www.w3.org/2005/05/xmlmime">
<xs:import namespace="http://www.w3.org/2005/05/xmlmime" schemaLocation="http://www.w3.org/2005/05/xmlmime"/>
<xs:import namespace="http://schemas.hp.com/SM/7/Common" schemaLocation="http://bp4smdemo.hpsweducation.com:13080/SM/7/Common.xsd"/>
<xs:complexType name="IncidentKeysType">
<xs:sequence>
<xs:element minOccurs="0" name="IncidentID" nillable="true" type="cmn:StringType"/>

</xs:sequence>
<xs:attribute name="query" type="xs:string" use="optional"/>
<xs:attribute name="updatecounter" type="xs:long" use="optional"/>

</xs:complexType>
...

</xs:schema>
</types>

Notes.
A number of complexType tags will normally appear within a schema, even though
we’ve only shown one.

Page 18 of 108

CHAPTER 2. SOAP INTRODUCTION

WSDL types

<types>
<xs:schema

xmlns:xs="http://www.w3.org/2001/XMLSchema"
attributeFormDefault="unqualified"
elementFormDefault="qualified"
targetNamespace="http://schemas.hp.com/SM/7"
version="2011-12-04 Rev 1"
xmlns="http://schemas.hp.com/SM/7"
xmlns:cmn="http://schemas.hp.com/SM/7/Common"
xmlns:xmime="http://www.w3.org/2005/05/xmlmime">

<xs:import namespace="http://www.w3.org/2005/05/xmlmime" schemaLocation="http://www.w3.org/2005/05/xmlmime"/>
<xs:import namespace="http://schemas.hp.com/SM/7/Common" schemaLocation="http://bp4smdemo.hpsweducation.com:13080/SM/7/Common.xsd"/>
<xs:complexType name="IncidentKeysType">
<xs:sequence>
<xs:element minOccurs="0" name="IncidentID" nillable="true" type="cmn:StringType"/>

</xs:sequence>
<xs:attribute name="query" type="xs:string" use="optional"/>
<xs:attribute name="updatecounter" type="xs:long" use="optional"/>

</xs:complexType>
</xs:schema>

</types>

Notes.
The schema includes a number of attributes.

Page 19 of 108

2.3. WSDL

WSDL types

<types>
<xs:schema ...>
<xs:import

namespace="http://www.w3.org/2005/05/xmlmime"
schemaLocation="http://www.w3.org/2005/05/xmlmime"/>

<xs:import ...>
<xs:complexType name="IncidentKeysType">
<xs:sequence>
<xs:element

minOccurs="0"
name="IncidentID"
nillable="true"
type="cmn:StringType"/>

</xs:sequence>
<xs:attribute

name="query"
type="xs:string"
use="optional"/>

<xs:attribute
name="updatecounter"
type="xs:long"
use="optional"/>

</xs:complexType>
</xs:schema>

</types>

Notes.
Imported namespaces provide some of the tags used to describe data structures.
Attributes include an indication whether values can be explicitly empty, or whether
their use is compulsory.

Page 20 of 108

CHAPTER 2. SOAP INTRODUCTION

WSDL types

<types>
<xs:schema ...>
<xs:import ...>
<xs:complexType name="IncidentKeysType">
<xs:sequence>
<xs:element minOccurs="0" name="IncidentID" nillable="true" type="cmn:StringType"/>

</xs:sequence>
<xs:attribute

name="query"
type="xs:string"
use="optional"/>

<xs:attribute
name="updatecounter"
type="xs:long"
use="optional"/>

</xs:complexType>
</xs:schema>

</types>

Notes.
Only the innermost data types can be predefined, like string. Almost everything
else is complexType with internal structure.

Page 21 of 108

2.3. WSDL

WSDL message

<message name="RetrieveIncidentRequest">
<part element="ns:RetrieveIncidentRequest"

name="RetrieveIncidentRequest"/>
</message>
<message name="RetrieveIncidentResponse">
<part element="ns:RetrieveIncidentResponse"

name="RetrieveIncidentResponse"/>
</message>

Notes.
Here we intuit from the tag names used that RetrieveIncident uses one message
type for the Request and another for the Response.
Typically, a message only contains one part.

Page 22 of 108

CHAPTER 2. SOAP INTRODUCTION

WSDL operation and portType

<portType name="IncidentManagement">
<operation name="RetrieveIncident">
<documentation/>
<input message="ns:RetrieveIncidentRequest"/>
<output message="ns:RetrieveIncidentResponse"/>

</operation>
<operation name="RetrieveIncidentKeysList">
<documentation/>
<input message="ns:RetrieveIncidentKeysListRequest"/>
<output message="ns:RetrieveIncidentKeysListResponse"/>

</operation>
</portType>

Notes.
Here, an operation has an input and output message.

Page 23 of 108

2.3. WSDL

WSDL binding

<binding name="IncidentManagement" type="ns:IncidentManagement">
<soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="RetrieveIncident">
<soap:operation soapAction="Retrieve"

style="document"/>
<input>
<soap:body use="literal"/>

</input>
<output>
<soap:body use="literal"/>

</output>
</operation>

</binding>

Notes.
The binding includes information on how to transport data for each operation.
In this case, "literal" means to transport the XML without compression or
conversion to binary format.

Page 24 of 108

CHAPTER 2. SOAP INTRODUCTION

WSDL port and service

<service name="IncidentManagement">
<port binding="ns:IncidentManagement"

name="IncidentManagement">
<soap:address

location="http://bp4smdemo.hpsweducation.com:13080/SM/7/ws"/>
</port>

</service>

Typically there is only one port entry within the service.

Notes.

Page 25 of 108

2.4. HOW DO I ACCESS THE SERVICE MANAGER SOAP SERVICE?

2.4 How do I access the Service Manager SOAP ser-
vice?

SOAP on HP Service Manager

The SOAP service is presented via HTTP on a configurable
TCP port of your SM machine (default 13080). A request
contains some HTTP headers, followed by an XML body.
The response is returned in the same format.
Although web browsers have a mechanism for file upload,
they typically have no general mechanism to allow passing
content into a web service, so the alternatives are to use an
existing program designed to pass XML to a web service,
such as a REST client, or to write your own program which
does this.
This course introduces programming in Perl using the
SOAP::Lite module.

Notes.
The server TCP ports are configured in the sm.ini file, as in this excerpt

system:13080
httpPort:13080
sslConnector:0
httpsPort:13443

The web tier is often configured to listen on port 8080, and runs inside a java
application server, such as Tomcat. A load balancer is often run in front of this.
The web services interface does not involve the web tier, but communicates di-
rectly a ServiceManager application server. The web tier is also configured to talk
to the application servers.
Unfortunately the WSDL definitions provided by HP Service Manager do not
make it easy to work out all the details of message structure. In particular, the
language does not express which values SM will be happy with, and which will
cause distress or misbehaviour.
You may find, as we have done, that a certain amount of trial and error is
necessary, as is comparison with the results of using SM from a web browser.

Page 26 of 108

CHAPTER 2. SOAP INTRODUCTION

extaccess

Notes.
With SM, the WSDL file content is dynamically generated, as a result of the
current settings in the extaccess table.
The Service Name is the name presented by web services and forms the basis of
where the WSDL file is located.
http://servername:port/SM/7/Service Name.wsdl
“Name” is the name of the supporting Service Manager table.
“Object Name” is appended to the allowed actions so that it can be distinguished
from other actions on the same Service Name.
Column 1 of the table lists the column names in the table. Column 2 represents
their names as presented via web services.

Page 27 of 108

2.5. EXERCISE

2.5 Exercise

Exercise

Exercise: Fetch the WSDL definition from HP Service Man-
ager
Within http://bp4smdemo.hpsweducation.com:13080/SM/7/
you’ll find a number of .wsdl files, including

• ChangeManagement.wsdl

• ConfigurationManagement.wsdl

• FSCManagement.wsdl

• IncidentManagement.wsdl

• ProblemManagement.wsdl

• ServiceDesk.wsdl

Fetch at least one of these files, and inspect the content.

Notes.
Your easiest approach is to use a web browser. You’ll need to type the full URL
into the address field of your browser, since you won’t be able to browse by
directory search.
Command line alternatives available on most non-Windows systems include one
or more of:

• wget -O (that’s capital letter O)

• curl -o

• ftp -o (BSD)

If you have extra time, you might also want to compare with what you see using
SM in a web browser.
Log in to http://bp4smdemo.hpsweducation.com/.
Navigate to Tailoring > Web Services > WSDL Configuration.
Ask the trainer for more information on values to try in the form.

Page 28 of 108

3
SOAP in Perl

29

3.1. WHAT OPTIONS ARE THERE FOR SOAP/WSDL CLIENT-SIDE IN
PERL?
3.1 What options are there for SOAP/WSDL client-

side in Perl?

SOAP modules

Hundreds of Perl modules claim to implement or to use
SOAP.
SOAP::Lite appears to provide the most popular method for
writing SOAP clients and servers. Its dependency on WSDL
is relatively ’Lite’. With the level of information provided by
SM for WSDL, this appears to be a reasonable match.
SOAP::WSDL provides a heavier weight implementation, much
more strongly tied to WSDL, and requiring configuration be-
fore use. The benefits gained do not appear to justify the
costs of using this.

Notes.
In addition, MIME::Base64 is used for basic password authentication. If you care
about protecting this data in transit, you might want to configure your SM SOAP
service, or a reverse proxy in front of it, to use SSL.

Page 30 of 108

CHAPTER 3. SOAP IN PERL

CPAN

The Comprehensive Perl Archive Network is the standard
mechanism for providing Perl modules not otherwise in-
cluded with your original Perl installation. Whether the mod-
ules you need are included, or need to be added after market,
will depend on decisions of your Perl vendor.
If you know how to use CPAN, please let your trainer know,
and we can move on to the meat of this course.
ActiveState Perl provides its own package manager, PPM, for
installing third party modules.

Notes.

Page 31 of 108

3.1. WHAT OPTIONS ARE THERE FOR SOAP/WSDL CLIENT-SIDE IN
PERL?

ActiveState PPM

Running ppm without specifying an argument should enable
you to determine if the modules you need are installed. The
ones we refer to explicitly are MIME::Base64 and SOAP::Lite.
Depending on the version of ActiveState Perl, you may find
these packages already installed.
If you have ActiveState Perl installed, but SOAP::Lite is not
installed, you should be able to install it by opening a com-
mand prompt window, and typing the command
ppm install SOAP-Lite

Similarly for MIME::Base64, packaged as MIME-Base64.

Notes.
Note that PPM package names use - instead of ::.

Page 32 of 108

CHAPTER 3. SOAP IN PERL

3.2 Building a Perl client

Perl client

We’ll go through the steps of building a script which retrieves
contacts from HP Service manager. The exercise at the end of
this part of the course will be polishing this to make it work.

Notes.

Page 33 of 108

3.3. SOAP::LITE — PUTTING STUFF IN

3.3 SOAP::Lite — putting stuff in

Starting out

a.pl

1 #!/usr/bin/perl
2
3 use strict;
4 use warnings;
5
6 use SOAP::Lite;
7
8 my $site = ’http://bp4smdemo.hpsweducation.com:13080/SM/7’;
9
10 my $soap = SOAP::Lite->new(
11 proxy => "$site/ws",
12 service => "$site/ConfigurationManagement.wsdl",
13 default_ns => $site);

Notes.
The main element is the new invocation on lines 10–13, which creates a new client
object used for accessing the SOAP service.
Before we can use use SOAP::Lite, we have to import it, which we do on line 6.
The proxy argument on line 11 specifies the URL for the POST command.
The service argument on line 12 specified the URL for WSDL description of the
SOAP service.
The default_ns argument on line 13 specifies the namespace used for XML tags
within the request we will assemble.
Because the values for proxy, service, and default_ns share common content,
we have used line 8 to factor it out.
The strict and warnings pragmata on lines 3–4 make Perl programming a little
safer.
The #! comment on line 1 is appropriate for Linux, BSD, and most Unix editions.
Perl uses double quotes " around strings which require interpolation of $ and
\ expressions, and single quotes ’ around strings which do not required such
interpolation. You could of course use " around a strings which doesn’t include
$ or \ with the same result as using ’.
Use of modules such as Perl::Critic can be used to impose coding style re-
strictions on your code. The sample code provided with this course does not
necessarily follow all such recommendations.

Page 34 of 108

CHAPTER 3. SOAP IN PERL

Add the call

b.pl

10 my $soap = SOAP::Lite->new(
11 proxy => "$site/ws",
12 service => "$site/ConfigurationManagement.wsdl",
13 default_ns => $site);
14
15 my $som = $soap->call(’RetrieveContactKeysList’);
16
17 print "Fault\n" if ($som->fault);
18
19 print $som->valueof(’//RetrieveContactKeysListResponse/keys’) . "\n";

Notes.
Now we add the call on line 15 and a first attempt at showing any error on line
17 or the result on line 19.
Unfortunately we receive a runtime error

Use of uninitialized value in concatenation (.) or string at soap-lite/b line 19.

which suggests that the call failed.

Page 35 of 108

3.3. SOAP::LITE — PUTTING STUFF IN

Tracing SOAP

c.pl

1 #!/usr/bin/perl
2
3 use strict;
4 use warnings;
5
6 use SOAP::Lite +trace => ’debug’;
7
8 my $site = ’http://bp4smdemo.hpsweducation.com:13080/SM/7’;
9
10 my $soap = SOAP::Lite->new(
11 proxy => "$site/ws",
12 service => "$site/ConfigurationManagement.wsdl",
13 default_ns => $site);
14
15 my $som = $soap->call(’RetrieveContactKeysList’);
16
17 print "Fault\n" if ($som->fault);
18
19 print $som->valueof(’//RetrieveContactKeysListResponse/keys’) . "\n";

Notes.
To help determine what went wrong, we enable tracing within SOAP::Lite, by
modifying line 6. The module will show the HTTP request and response, includ-
ing raw XML.
The result of running the script reveals output

HTTP/1.1 401 Unauthorized
Connection: close
Date: Sun, 05 Aug 2012 08:15:35 GMT
Server: Apache-Coyote/1.1
WWW-Authenticate: Basic realm="CASM"
Content-Length: 40
Content-Type: text/html;charset=utf-8
Client-Date: Sun, 05 Aug 2012 09:22:18 GMT
Client-Peer: 74.50.56.155:13080
Client-Response-Num: 1

<HTML><BODY>Not Authorized</BODY></HTML>

Page 36 of 108

CHAPTER 3. SOAP IN PERL

Add authorization
d.pl

6 use SOAP::Lite +trace => ’debug’;
7 use MIME::Base64;
8
9 my $site = ’http://bp4smdemo.hpsweducation.com:13080/SM/7’;
10 my $user = ’falcon’;
11 my $password = ’orange perfection’;
12 my $auth = encode_base64("$user:$password", ’’);
13
14 my $soap = SOAP::Lite->new(
15 proxy => "$site/ws",
16 service => "$site/ConfigurationManagement.wsdl",
17 default_ns => $site);
18 $soap->transport->http_request->header(’Authorization’
19 => "Basic $auth");
20
21 my $som = $soap->call(’RetrieveContactKeysList’);
22
23 print "Fault\n" if ($som->fault);
24 print $som->valueof(’//RetrieveContactKeysListResponse/keys’) . "\n";

Notes.
Service Manager uses basic HTTP authorization, which requires using base64
encoding of the user and password.
Line 7 imports the module which provides base64 encoding.
Line 18 adds the Authorization header to the request, as revealed by the tracing
output.
The result of running the script now receives a SOM (SOAP Output Message).
Unfortunately it indicates a fault, but that’s far better than not executing the SOAP
request at all. The output XML has been editted for readability.
HTTP/1.1 500 Internal Server Error
Connection: close
Date: Sun, 05 Aug 2012 08:58:11 GMT
Server: Apache-Coyote/1.1
Content-Type: text/xml;charset=utf-8
Client-Date: Sun, 05 Aug 2012 10:04:54 GMT
Client-Peer: 74.50.56.155:13080
Client-Response-Num: 1
Set-Cookie: JSESSIONID=19FDDDD3012A22CB923AB4BED1AD19CA; Path=/SM

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<SOAP-ENV:Fault>
<faultcode>SOAP-ENV:Server</faultcode>
<faultstring>A CXmlApiException was raised in native code : error 16 : scxmlapi(16) - Invalid or missing file name in XML request</faultstring>
<faultactor>Server</faultactor>

</SOAP-ENV:Fault>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Fault
Use of uninitialized value in concatenation (.) or string at soap-lite/d line 24.

Page 37 of 108

3.3. SOAP::LITE — PUTTING STUFF IN

Fault handling

e.pl

20 my $som = $soap->call(’RetrieveContactKeysList’);
21
22 if ($som->fault) {
23 my $code = $som->faultcode;
24 my $actor = $som->faultactor;
25 my $string = $som->faultstring;
26 my $detail = $som->faultdetail;
27 my $out = "Fault\n";
28 $out .= "\tCode\t$code\n" if ($code);
29 $out .= "\tActor\t$actor\n" if ($actor);
30 $out .= "\tString\t$string\n" if ($string);
31 $out .= "\tDetail\t$detail\n" if ($detail);
32 die $out;
33 }
34
35 print $som->valueof(’//RetrieveContactKeysListResponse/keys’) . "\n";

Notes.
Now that we can recognize a fault as reported by SOAP, we extract the fault
information from the SOAP response and print it, lines 22–33.
If there was a fault, we no longer attempt to print useful results, but rather exit
the script with error indication on line 32.
This removes the error message about uninitialized value.

Page 38 of 108

CHAPTER 3. SOAP IN PERL

How to proceed

The fault we currently see is
Fault

Code SOAP-ENV:Server
Actor Server
String A CXmlApiException was raised in native code : \
error 16 : scxmlapi(16) - Invalid or missing file \
name in XML request

Unfortunately this is insufficient to suggest the direction to
proceed.
Two modifications are needed to make progress, discovered
by reading the .wsdl file, and by comparing the SOAP request
with a working non-Perl implementation.

Notes.

Page 39 of 108

3.3. SOAP::LITE — PUTTING STUFF IN

Two changes

f.pl

14 my $soap = SOAP::Lite->new(
15 proxy => "$site/ws",
16 service => "$site/ConfigurationManagement.wsdl",
17 default_ns => $site);
18 $soap->transport->http_request->header(’Authorization’
19 => "Basic $auth");
20 $soap->on_action(sub { ’"RetrieveKeysList"’; });
21
22 my $keys = SOAP::Data->name(’keys’ => ’’)->type(’’);
23 my $instance = SOAP::Data->name(’instance’ => ’’)->type(’’);
24 my $model = SOAP::Data->name(’model’ =>
25 \SOAP::Data->value($keys, $instance));
26 my $som = $soap->call(’RetrieveContactKeysList’, $model);

Notes.
Looking at ConfigurationManagement.wsdl shows

<operation name="RetrieveContactKeysList">
<soap:operation soapAction="RetrieveKeysList" style="document"/>
...

</operation>

where the soapAction attribute does not include Contact. On line 19, we have
modified the SOAPAction header to use this value, rather than the incorrect
SOAP::Lite default.
On lines 21–23 we have constructed data which modifies the RetrieveContactKeysList
part of the request XML from

<RetrieveContactKeysList
xmlns="http://bp4smdemo.hpsweducation.com:13080/SM/7"
xsi:nil="true" />

to

<RetrieveContactKeysList
xmlns="http://bp4smdemo.hpsweducation.com:13080/SM/7">

<model>
<keys />
<instance />

</model>
</RetrieveContactKeysList>

These modifications change the output to

HASH(0x7fe1eaaeedb0)

meaning that there is now a result, even if it doesn’t yet look informative.
The use of SOAP::Data will be explained more later.

Page 40 of 108

CHAPTER 3. SOAP IN PERL

3.4 SOAP::SOM — getting stuff back out

SOM

SOM stands for SOAP Object Model.
What remains now is to process the SOAP::SOM object received
from $soap->call.
We use the valueof method on $som to extract data, using ex-
pressions similar to those used with DOM (describing HTML
documents for manipulation using Javascript, etc.).

Notes.
The beginning and end of the XML response are

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<RetrieveContactKeysListResponse message="Success" query="" returnCode="0" schemaRevisionDate="2011-12-04" schemaRevisionLevel="1" status="SUCCESS" xmlns="http://schemas.hp.com/SM/7" xmlns:cmn="http://schemas.hp.com/SM/7/Common" xmlns:xmime="http://www.w3.org/2005/05/xmlmime" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://schemas.hp.com/SM/7 http://bp4smdemo.hpsweducation.com:13080/SM/7/Contact.xsd">
<keys><ContactName type="String">AARON, JIM</ContactName></keys>
<keys><ContactName type="String">ACRE CORNER, ROB</ContactName></keys>
...
<keys><ContactName type="String">ZAHN, HAROLD</ContactName></keys>

</RetrieveContactKeysListResponse>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Page 41 of 108

3.4. SOAP::SOM — GETTING STUFF BACK OUT

Output

g.pl

30 my $detail = $som->faultdetail;
31 my $out = "Fault\n";
32 $out .= "\tCode\t$code\n" if ($code);
33 $out .= "\tActor\t$actor\n" if ($actor);
34 $out .= "\tString\t$string\n" if ($string);
35 $out .= "\tDetail\t$detail\n" if ($detail);
36 die $out;
37 }
38
39 foreach my $k
40 ($som->valueof(’//RetrieveContactKeysListResponse/keys/ContactName’)) {
41 print "$k\n";
42 }

Notes.
We changed line 39 to a loop over the appropriate elements of the SOM, and the
result begins with

AARON, JIM
ACRE CORNER, ROB
ADAMS, IRENE
ADMIN HARVEY
ADMIN, CONFIG

You may notice some blank lines in the output. These are due to some ContactName
values containing multiple lines.

Page 42 of 108

CHAPTER 3. SOAP IN PERL

soapdata outer

h.pl

39 soapdata($som, ’//RetrieveContactKeysListResponse/keys’, 1);
40
41 sub soapdata {
42 my ($som, $root, $num) = @_;
43 my $ref = $som->valueof($root);
44 my @keys = sort(keys(%$ref));
45 foreach my $k (@keys) {
46 my $count = 0;
47 foreach my $v ($som->valueof("$root/$k")) {

68 }
69 }
70 }

Notes.
Now we’ve replaced lines 39–41 with a more general routine which knows how to
show the internal structure of a SOM node. This may not make much difference
to a key listing, but it will help when we retrieve individual records with a larger
number of fields.
On line 42, the first parameter gives the SOM to extract data from, the second
parameter indicates which part of the SOM to show, while the third parameter
indicates whether the elements are believed to be part of an array. In this case
numbers are added.
The soapdata function is not specific to this script, so it could be separated into
a separate file, and included using use. We’ll do this shortly.

Page 43 of 108

3.4. SOAP::SOM — GETTING STUFF BACK OUT

soapdata inner 1

h.pl

47 foreach my $v ($som->valueof("$root/$k")) {
48 my $kk = $k;
49 $count += 1;
50 if (! defined $v) {
51 $kk .= "[$count]" if ($num);
52 print "$kk: (undefined)\n";
53 } elsif (ref($v) eq ’HASH’) {
54 soapdata($som, "$root/$k", 1);
55 } elsif ($v eq ’’) {
56 $kk .= "[$count]" if ($num);
57 print "$kk: (empty)\n";
58 } else {

67 }
68 }

Notes.
Line 47 allows the possibility of repetition.
Lines 51–52 handle the case where there is no data.
Line 54 handles the case where there is nested structure.
Lines 56–57 handle the case where there is data, but it’s an empty string.

Page 44 of 108

CHAPTER 3. SOAP IN PERL

soapdata inner 2

h.pl

58 } else {
59 $kk .= "[$count]" if ($num);
60 my @ls = split(/\n/, $v);
61 my $lcount = 0;
62 foreach my $l (@ls) {
63 $lcount += 1;
64 $kk .= "($lcount)" if ($#ls > 0);
65 print "$kk: $l\n";
66 }
67 }

Notes.
Lines 59–66 handle the case where the data is a string, including the possibility
of it spanning multiple lines.

Page 45 of 108

3.4. SOAP::SOM — GETTING STUFF BACK OUT

HPSMSOAP module

A useful step here is to make soapdata a separate module.
HPSMSOAP.pm

1 #!/usr/bin/perl
2
3 use SOAP::Lite;
4
5 package HPSMSOAP;
6 require Exporter;
7 @ISA = qw(Exporter);
8 @EXPORT = qw(soapdata);
9
10 sub soapdata {

39 }
40
41 1;

Notes.
We put the function into a separate file, called HPSMSOAP.pm, with a small amount
of decoration.
The extra lines around the soapdata function make the containing file a module.
The filename must have the .pm suffix. It may be easiest to keep this file within
the same directory as the scripts which use it.
The 1; line at the end is a quirk of needing file inclusions to return with success.

Page 46 of 108

CHAPTER 3. SOAP IN PERL

Using the module

i.pl To use the new module, we add line 8 to our script and
remove the body of the soapdata function from the end of it.
6 use SOAP::Lite +trace => ’debug’;
7 use MIME::Base64;
8 use HPSMSOAP;

Notes.

Page 47 of 108

3.5. SOAP::DATA — CALLING PARAMETERS

3.5 SOAP::Data — calling parameters

Calling parameters

With the RetrieveContactKeysList script we’ve written so
far, we haven’t needed to pass any parameters to the script.
Once we have the name of a Contact, we may wish to write
a script which shows more information about a particular
contact, say RetrieveContact, in which case we need to get
the name into the script somehow, and pass it in the SOAP
request.
One approach is to have the script read the argument, while
another is to pass it on the command line. The second ap-
proach is more usual in scripting on Unix and Linux systems
because it enables multiple arguments to be used even if some
take more than one line.

Notes.
Reading multiple arguments from the terminal or standard input would make it
difficult to handle a mixture of multiple arguments and multiple line arguments,
while the POSIX shell is happy to allow quoted strings to cover multiple lines.

Page 48 of 108

CHAPTER 3. SOAP IN PERL

SOAP::Data

Now let’s look at the SOAP::Data lines in the script.
21 my $keys = SOAP::Data->name(’keys’ => ’’)->type(’’);
22 my $instance = SOAP::Data->name(’instance’ => ’’)->type(’’);
23 my $model = SOAP::Data->name(’model’ =>
24 \SOAP::Data->value($keys, $instance));

Notes.
SOAP::Data->name takes arguments like (’thing’ => ’one’) which produces <thing>one</thing>.
SOAP::Lite attempts to deduce the type of the value (e.g., ’one’ looks like a string)
and will typically add an attribute to the opening <thing> tag to indicate this. This
often produces unwanted or even incorrect verbiage, hence the use of ->type(’’)
to remove the attribute.
If the tag value is to be empty, we can use SOAP::Data->name(’thing’ => ’’)->type(’’)
which produces <thing/>, which is equivalent to <thing></thing>.
SOAP::Data->value provides a way to specify nesting of tags, taking a number of
arguments for the contained content. Specifying this type of value as the right
hand part of a SOAP::Data->name invocation requires creating a reference, hence
the \.

Page 49 of 108

3.6. EXERCISE

3.6 Exercise

Exercise

• Exercise: Retrieving contacts from HP Service Manager

Notes.
Ensure that your copy of RetrieveContactKeysList.pl works. (On systems other
than Windows, you may be able to omit the .pl extension.)
Copy RetrieveContactKeysList.pl to RetrieveContact.pl (Omit .pl if both de-
sired and possible).
Edit in the necessary changes

• Remove KeysList whereever it occurs.

• The first command line argument is the first element of @ARGV, namely
$ARGV[0].

• The <instance/> field in the request needs to become <instance><ContactName>Whatever</ContactName></instance>.

• The part of the response to print is within //RetrieveContactResponse/model/instance.

• When you think it’s ready, try with a contact who exists (say, XINTIAN), and
one who doesn’t (say, FRED).

If your argument contains spaces or special characters, you’ll need to quote it. On
Windows, you’ll need to use double quote ". On POSIX you can choose between
’ and ".
You should find RetrieveContact.pl works identically whether you put the
<ContactName> inside <instance> or inside <keys>.
If you try to put a reference to the same SOAP::Data into both, you’ll have a
failure, but you could make two copies with the same string value, and it’ll
work.

Page 50 of 108

4
HP Service Manager Tickets

51

4.1. CONTACTS AND OPERATORS

4.1 Contacts and operators

Contacts and operators

A ticketing system such as HP Service Manager involves sev-
eral different kinds of people.

operator a person who operates the SM web interface to
record, modify, or otherwise act upon tickets, usually
on behalf of somebody else; this may include service
technicians and other professionals

contact a person who communicates with an operator, by
telephone or email, to address an issue on behalf of
themselves or someone else

self-service a person (other than an operator) who uses SM,
perhaps with restricted access, to record tickets on their
own behalf

In addition computer programs may create tickets reflecting
issues which need to be addressed, such as outages, or modify
tickets when other situations occur, such as timeouts.

Notes.
Other people involved with SM include supervisors and those whose work is less
directly driven by SM tickets than level 1 operators.
A person may be both an operator and a contact.

Page 52 of 108

CHAPTER 4. HP SERVICE MANAGER TICKETS

HP Service Manager ticket types

interaction When a client communicates with an operator,
the operator normally creates an interaction ticket to
record this event.

incident When an interaction is complex enough not to be
fully dealt with during the call, the interaction is esca-
lated, and an incident ticket is created from the interac-
tion.

change Sometimes the issue causing communication via SM
is that a software or hardware requires (re)installation
or upgrading. A change ticket is created to track this.
This ticket type includes fields for build, testing, and
deployment.

Notes.

interaction An interaction ticket is always given a category, namely incident, or a
request for administration, information, or change.
Some interaction tickets are closed almost immediately after opening, during
the initial conversation, as the operator satisfies the contact.
An ongoing issue is typically escalated to an incident, which is a separate
kind of ticket related to the interaction.

incident The incident is an issue which remains current until explicit steps are
taken to close or abandon it. The incident may have related interactions,
incidents, or other ticket types..

change A change ticket is not identical to the “request for change” category for
interaction tickets. An interaction in that category will escalate to a change
ticket.

Page 53 of 108

4.1. CONTACTS AND OPERATORS

Interaction tickets

When a contact calls an operator, an interaction ticket is cre-
ated. The interaction ticket must be categorized as one of

incident something has gone wrong and needs to be fixed

request for one of

administration grant access or password reset
change emergency, normal, or standard
information complaint, how to, status, etc.

Notes.
Some amount of diagnosis and classification can be undertaken by the operator
during the call, while further processing by operators or analysts may be necessary
to progress the ticket further.

Page 54 of 108

CHAPTER 4. HP SERVICE MANAGER TICKETS

4.2 Interaction tickets and their lifecycle

Interaction tickets

create When a client talks with an operator, the operator
creates in interaction ticket to record the issue.

escalate If the issue cannot be fully dealt with during the call,
and is not a request with its own category, the operator
will escalate the issue, which creates a related incident
ticket.

close When the client is fully satisfied the issue has been
handled, the operator will close the issue.

Notes.
If the interaction is marked for email callback, closing other ticket types may close
related interaction tickets, as the email notification is automated.
If the interaction is marked for telephone callback, the operator is expected to call
the contact back before closing the interaction.

Page 55 of 108

4.2. INTERACTION TICKETS AND THEIR LIFECYCLE

Interaction: Incident

Notes.
This screenshot was taken after an incident-category interaction was created and
escalated. Both the interaction and the related incident were saved.
Note the red stars indicating compulsory fields.

Page 56 of 108

CHAPTER 4. HP SERVICE MANAGER TICKETS

Scroll down

Notes.
Scrolling down the previous web page shows a link to the related incident.

Page 57 of 108

4.2. INTERACTION TICKETS AND THEIR LIFECYCLE

Interaction: Request for Administration

Notes.
This screenshot was taken after a request for administration interaction was cre-
ated.

Page 58 of 108

CHAPTER 4. HP SERVICE MANAGER TICKETS

Interaction: Request for Information

Notes.
This screenshot was taken after a request for information interaction was created.

Page 59 of 108

4.2. INTERACTION TICKETS AND THEIR LIFECYCLE

Interaction: Request for Change

Notes.
This screenshot was taken after a request for change interaction was created and
escalated. Both the interaction and the related change were saved.

Page 60 of 108

CHAPTER 4. HP SERVICE MANAGER TICKETS

Scroll down

Notes.
Scrolling down the previous web page shows a link to the related change.

Page 61 of 108

4.3. INCIDENT TICKETS AND THEIR LIFECYCLE

4.3 Incident tickets and their lifecycle

Incident tickets

categorize and prioritize The operator will attempt to de-
scribe the incident, and determine urgency and impact.

analyse and diagnose The operator attempts to find a cause
and/or documented workaround.

relate The operator will attempt to find related incidents, and
mark them as such in Service Manager.

reassign If the incident is beyond the operator’s skill, the
ticket may be reassigned to more experienced staff.

raise a change ticket If a software or hardware change is re-
quired, the operator may raise a change ticket.

resolve If the issue has been resolved to the operator’s un-
derstanding, it may be marked as resolved.

close When the contact is also satisfied with the resolution of
the incident, it may be closed.

abandon If the contact loses interest in the incident, and no-
body else believes it to be an issue, the incident may be
marked as abandoned.

Notes.

Page 62 of 108

CHAPTER 4. HP SERVICE MANAGER TICKETS

Incident

Notes.
This ticket was created by escalating an interaction ticket.
It is possible to create an incident ticket directly, rather than from escalation of
an interaction.

Page 63 of 108

4.4. CHANGE TICKETS AND THEIR LIFECYCLE

4.4 Change tickets and their lifecycle

Change tickets

log An operator creates the ticket. Fields may be copied from
a request for change interaction.

assess and evaluate Assess what needs to be done, and what
it will take.

analyse risk and impact Analyse what services will be af-
fected by the change, and the relative risk of doing or
not doing the change.

approve Includes assigning resources to do the work.

build and test Assigned resources build and test as required.

schedule Schedule deployment, including notifications.

implement Deploy the hardware and/or software.

review Post-Implementation Review.

Notes.

Page 64 of 108

CHAPTER 4. HP SERVICE MANAGER TICKETS

Change

Notes.
This ticket was created by escalating an interaction ticket.
It is possible to create an change ticket directly, rather than from escalation of an
interaction.

Page 65 of 108

4.4. CHANGE TICKETS AND THEIR LIFECYCLE

Scroll down

Notes.
Scrolling down shows the related interaction.

Page 66 of 108

CHAPTER 4. HP SERVICE MANAGER TICKETS

4.5 Exercise

Exercise

Exercise: Using the HP Service Manager web interface to
see tickets

Notes.
Log in to http://bp4smdemo.hpsweducation.com/bp4sm93/.
Visit each of

• Service Desk > Interaction Queue

• Incident Management > Incident Queue

• Change Management > Changes > Change Queue

Page 67 of 108

5
Creating Tickets

68

CHAPTER 5. CREATING TICKETS

5.1 Common fields

Creation

Creating tickets requires modifying existing information or
adding new information.
As this is more destructive than merely fetching existing in-
formation, your script should check additional sources of in-
formation about things which might not be quite right.
We suggest including
soapfault($som);
soapstatus($som);
soapdata($som, ’//XResponse/messages’, 1);

near the end of your script, just before you show the result.
You will need to replace X with the appropriate request type.

Notes.
The soapfault and soapstatus routines are included in the provided HPSMSOAP.pm
package.
If there was a SOAP error preventing execution of your request, soapfault will
indicate what the fault was, and stop the script. Errors tend to be because of
missing or erroneous parts in the request XML.
If there was no SOAP error, in that there was a response received from the server,
soapstatus will indicate a summary of the status of your request. A status other
than success can still result in ticket creation, in which case some fields will have
default or empty values.
The soapdata invocation with /messages will show any messages sent by the
server to indicate why status might not be an unambiguous Success. For ticket
creation, these messages should indicate what fields are missing or fail validation.

Page 69 of 108

5.1. COMMON FIELDS

Common fields

Most tickets require the following fields to be given valid
values

Contact Who wants this done, and/or to be informed about
it

Title One line summary of the ticket

Description Multi-line description of the problem, issue, etc.

AffectedService What software service is at issue

AffectedCI What hardware is at issue

Impact Number 1–4 expands to one of 1 Enterprise, 2
Site/Dept, 3 Multiple Users, 4 User

Urgency Number 1–4 expands to one of 1 Critical, 2 High, 3
Average, 4 Low

Notes.
Our sample program checks for certain fields to ensure they are specified.
Only one of AffectedService and AffectedCI is required.
The Contact, AffectedService or AffectedCI, Impact, Urgency, and several other
fields must match values already known to Service Manager.
For the Change ticket, you need to use InitiatedBy and bp.primary.contact
instead of Contact.

Page 70 of 108

CHAPTER 5. CREATING TICKETS

5.2 Create skeleton

Create skeleton 1

m.pl

1 #!/usr/bin/perl
2
3 use strict;
4 use warnings;
5
6 BEGIN {
7 if ($0 =~ m|^(.*)/[^/]+$|) {
8 push(@INC, $1);
9 }
10 }
11
12 use SOAP::Lite +trace => ’debug’;
13 use MIME::Base64;
14 use HPSMSOAP;
15

Notes.
Line 1 should work for any Unix-like OS including Linux and BSD. For Windows,
the extension .pl should be enough.
Lines 6–10 set the include path for Perl modules to include the directory con-
taining the script you’re running so that HPSMSOAP.pm can be found it if is in the
same directory. If you install HPSMSOAP.pm in one of the directories already on
your Perl include path, these lines can be omitted.
Line 12 enables tracing of SOAP messages. Once you’re satisfied your scripts
work, you could remove the +trace => ’debug’ if you like.

Page 71 of 108

5.2. CREATE SKELETON

Create skeleton 2

m.pl

15
16 my $site = ’http://bp4smdemo.hpsweducation.com:13080/SM/7’;
17 my $user = ’falcon’;
18 my $password = ’orange perfection’;
19 my $auth = encode_base64("$user:$password", ’’);
20
21 my %argument = ();
22 foreach my $a (@ARGV) {
23 if ($a =~ s/^([^=]+)=//) {
24 $argument{$1} = $a;
25 } else {
26 die "invalid argument [$a]\n";
27 }
28 }
29 my @required = qw(Contact Title Description Impact Urgency);

Notes.
Line 16 needs to be corrected to refer to your actual Service Manager URL.
Lines 17–18 need to be adjusted for the user you want your scripts to raise tickets
as.
Lines 21–28 check command line arguments are of the form Name=Value, and puts
them into a the dictionary %argument. The value needs to be quoted or escaped if
it includes anything which your shell might misinterpret, such as space, newline,
or special characters.
On Windows, you may have to (double) quote the entire command line argument
including the Name= part.

Page 72 of 108

CHAPTER 5. CREATING TICKETS

Create skeleton 3

m.pl

29 my @required = qw(Contact Title Description Impact Urgency);
30 my @missing = ();
31 my $misscount = 0;
32 foreach my $r (@required) {
33 if (! exists $argument{$r}) {
34 $misscount += 1;
35 push(@missing, $r);
36 }
37 }
38 die "$misscount required args missing:\n\t" . join(’ ’, sort(@missing)) . "\n"
39 if ($misscount);
40

Notes.
Lines 29–39 check whether the required arguments (as listed on line 29) are
present in %argument, and prints and error message if any are missing.
You probably want to add fields to 29 as appropriate for your request type as
you discover them.

Page 73 of 108

5.2. CREATE SKELETON

Create skeleton 4

m.pl

40
41 my @xargs = ();
42 foreach my $k (keys %argument) {
43 push(@xargs, SOAP::Data->name($k => $argument{$k}));
44 }
45 my $x = SOAP::Data->value(@xargs);
46
47 my $soap = SOAP::Lite->new(
48 proxy => "$site/ws",
49 service => "$site/XX.wsdl",
50 default_ns => $site);
51 $soap->transport->http_request->header(’Authorization’ => "Basic $auth");
52 $soap->on_action(sub { ’"Create"’; });
53

Notes.
Lines 41–45 encode the command line arguments into SOAP data for use on line
55 below.
Lines 47–52 create the SOAP::Lite object to be used for your request.
You will have to modify the XX on line 49 to refer to the correct .wsdl file for
your request type.

Page 74 of 108

CHAPTER 5. CREATING TICKETS

Create skeleton 5

m.pl

53
54 my $keys = SOAP::Data->name(’keys’ => ’’)->type(’’);
55 my $instance = SOAP::Data->name(’instance’ => \$x)->type(’’);
56 my $model = SOAP::Data->name(’model’ => \SOAP::Data->value($keys, $instance));
57 my $som = $soap->call(’CreateX’, $model);
58
59 soapfault($som);
60 soapstatus($som);
61 soapdata($som, ’//CreateXResponse/messages’, 1);
62 soapdata($som, ’//CreateXResponse/model’, 0);

Notes.
Lines 54–57 collect the arguments required for the call, and invokes the SOAP
service.
Line 55 uses the SOAP data encoded on lines 41–45 above.
Line 59 indicates whether there was a fault in the SOAP syntax, or any failure to
contact the SOAP server, and terminates the script of there was no useful SOAP
response.
Line 60 shows the SOAP status of the request.
Line 61 shows any warnings or informational messages associated with the SOAP
status. This may include notification of missing or invalid fields not caught above
in lines 29–39.
Line 62 shows the return data from your request.
You’ll need to modify X for your request type on lines 57 and 61–62.

Page 75 of 108

5.3. WHAT AN INTERACTION TICKET NEEDS

5.3 What an interaction ticket needs

Interaction ticket

Category must be one of

• incident

• request for change

• request for administration

• request for information

Area Acceptable values (and whether required) depend on
Category

Subarea Acceptable values (and whether required) depend
on Category

Notes.
Remember that incident and request for change categories both result in sep-
arate ticket types upon escalation, and that the resulting incident and change
tickets can actually be created separately without requiring an interaction ticket
to start from. Your work processes will probably specify whether to create the
interaction ticket or not.

Page 76 of 108

CHAPTER 5. CREATING TICKETS

5.4 What an incident ticket needs

Incident ticket

In addition to the common fields mentioned previously, an
incident ticket requires

AssignmentGroup Who will handle the incident.

Notes.
Additional fields are available for categorizing and classifying the incident further,
but a ticket can be created without them, or they could be added later with an
Update request if you wish.

Page 77 of 108

5.5. WHAT A CHANGE TICKET NEEDS

5.5 What a change ticket needs

Change ticket

In addition to the common fields mentioned previously, a
change ticket requires

Category Permitted values depend on whether BP4SM is in
use, and/or what customization has been done.

Reason Why is the change needed (menu)?

bp.effect.not.implementation What is the effect if the change
is not implemented?

InitiatedBy Who started this change?

bp.primary.contact Who is responsible to see this change
through?

AssignmentGroup Who will handle the incident?

RequestedEndDate When should the change be done by?

bp.status Similar to Status.

Notes.
The possible values of Category are defined in the category table. The area and
subarea tables define permissible subcategories and areas.
For users of HP Service Manager without BP4SM, the standard categories of
change include Hardware, Software, Maintenance and several others. Most sites
customize these.
For users of BP4SM, Category must be one of Emergency RFC, Normal RFC and
Standard RFC unless further site customisation has been done.

Page 78 of 108

CHAPTER 5. CREATING TICKETS

5.6 What ticket should I use?

What ticket should I use?

As described previously, each ticket type has a distinct usage.
We have discussed

• Change

• Incident

• Interaction

We have not discussed

• Configuration Management

• Knowledge Management

• Problem Management

• Release Management

• Request Management

• Service Catalog(ue)

Notes.

Page 79 of 108

5.6. WHAT TICKET SHOULD I USE?

Change ticket

If you’re recording a need for something to be changed,
hardware or software, a Change ticket may be appropriate.
As these require specific justification, they are probably best
raised using the browser interface.
Some changes may be routine enough to justify scripting.

Notes.

Page 80 of 108

CHAPTER 5. CREATING TICKETS

Incident ticket

If you’re recording an issue, other than a change, which re-
quires future or ongoing attention, and which is well under-
stood, an Incident ticket is reasonable. These may be routine
enough to script.
For scripting, we may usually expect the ticket raised to be
an Incident which can be auto-recognized by monitoring soft-
ware. In this case, it may even be possible for the monitoring
software to close some of the tickets it has raised.

Notes.

Page 81 of 108

5.6. WHAT TICKET SHOULD I USE?

Interaction ticket

If you’re recording an interaction between a contact and an
operator, which is complete during the conversation, or which
is a request for administration or information, an Interaction
ticket is reasonable. Given the presence of an operator in the
conversation, the browser interface is often appropriate.
Scripting these may be useful if you’re attempting to tie mul-
tiple Interactions into a single Incident.
We have not discussed how to script such relationships.

Notes.

Page 82 of 108

CHAPTER 5. CREATING TICKETS

5.7 Exercise

Exercise

Exercise: Creating an incident ticket

Notes.
Create an incident ticket using the browser interface.
Now attempt to create a script to do the same, referring back to your browser
ticket as needed to fill in values.
You may find a Retrieve script useful to determine the field names used by the
SOAP interface.

Page 83 of 108

6
Other Tickets and Tools

84

CHAPTER 6. OTHER TICKETS AND TOOLS

6.1 Service Catalogue

Service Catalogue

This provides access to information and things configured
to be available for the user to order or request. Depend-
ing on customization, this may include things like telephone
line provisioning, laptop purchase, or allocation of some re-
sources.
Knowledge Management is included, as knowledge docu-
ments grow over time.

Notes.
Actually, HP Service Manager spells it Service Catalog.

Page 85 of 108

6.2. CONFIGURATION ITEMS

6.2 Configuration Items

Configuration Items

Many different types of Configuration Items are available to
classify or group people, physical items, and abstract things
in ways which help document relationships relevant to the
ticket types used within HP Service Manager, and to inven-
tory individuals within each classification.

• Company, Computer, Contact, Department, Device, Dis-
playDevice, Furnishing, HandHeldDevice, Installed-
Software, Location, MainFrame, Model, NetworkDe-
vice, OfficeElectronic, SoftwareLicense, StorageDevice,
TelecommunicationDevice, Vendor

Note that many of these are specializations of others listed.

Notes.
Each of these types can be fetched using the RetrieveKeysList methods you’ve
already used, and then fetched individually using the Retrieve methods you’ve
also used. Your Create experience is also useful, but you’ll need to be aware of
the way things are grouped and classified to make it work for you.

Page 86 of 108

CHAPTER 6. OTHER TICKETS AND TOOLS

6.3 Creating a new web service interface

Creating a new web service interface

Up to now, this course has been about writing SOAP client
programs.
We’ll briefly discuss now providing SOAP service.

1. First preference is to use the ITIL-based features already
provided by Service Manager Web Services.

2. Second preference is to modify an existing extaccess
record to expose access to additional fields of database
records already in use for SM Web Services.

3. Third preference is do something new.

Notes.
You might want to consult the HP Service Manager Web Services Guide (SM9.30_Web_Services.pdf)
from http://support.openview.hp.com/selfsolve/manuals/

Page 87 of 108

6.3. CREATING A NEW WEB SERVICE INTERFACE

ITIL-based processes

• Service Desk

• Incident Management

• Problem Management

• Knowledge Management

• Configuration Management

• Change Management

• Service Catalogue

• Service Level Management

Notes.
These processes are available out-of-the-box.

Page 88 of 108

CHAPTER 6. OTHER TICKETS AND TOOLS

extaccess

Tailoring > Web Services > WSDL Configuration shows ex-
ternally exposed tables and fields.
Tailoring > Database Dictionary shows tables and fields.
Knowing what is connected to what can take some time to
learn, and some ferreting around to discover.
The difference between them may show that the data you’re
after is present in the SM database, but not yet accessible.
You may modify or add extaccess record information to
expose additional fields or tables.

Notes.
The extaccess tool uses the same file values as the Document Engine.
Browsing WSDL Configuration will help you determine which tables provide in-
formation for each .wsdl. From there, browsing Database Dictionary will help
you determine what fields are used, and perhaps what the table is actually used
for.
If you want Service Manager to use an externally provided service, you will need
to run WSDL2JS.

Page 89 of 108

6.4. CREATING A MAILER INTERFACE

6.4 Creating a mailer interface

eventout

• Notifications send messages to the eventout table

• These can be logs, email, page or many others.

• Other programs retrieve and delete from this table

Notes.
A quick way of identifying all possible “out events” available in your system is to
create a new notification and look at the “Notify Method” pull down.
Typically it will contain:

• connect

• email

• fax

• log

• mail

• msg

• noticenter

• noticenterappr

• page

• print

• tso

Many of these are absolete, or almost never used – for example, far fewer sites
are using “mail” (HP ServiceManager internal email) for notifications compared
to “email”. tso is even rarer as it is many, many years since HP ServiceManager
ran on a mainframe.
An out-of-the-box BP4SM or ServiceManager server will only have notifications
that trigger email, msg and mail.

Page 90 of 108

CHAPTER 6. OTHER TICKETS AND TOOLS

eventout

• Notifications send messages to the eventout table

• These can be logs, email, page or many others.

• Other programs retrieve and delete from this table.

• Usually done by Connect-IT

Notes.
msg notifications appear at the top of the screen in the user’s session if they are
logged in, and not at all if they are not. ServiceManager handles mail internally,
and version 9.3 introduced an SMTP sender. But other than these, ServiceMan-
ager has no built-in support for procesing out events.
Connect-IT (also known as CIT) is the tool used by most customers for this
job. Its strength is in handling web services; it can send emails and write log
messages. Complicated processing is difficult since any programming has to be
done in BASIC.
Connect-IT can connect on proprietary, unpublished APIs which give it access to
all tables regardless of whether they are exposed via WSDL.

Page 91 of 108

6.4. CREATING A MAILER INTERFACE

extaccess actions for eventout

Notes.
There is no WSDL definition for the eventout table, so one needs to be created.
There is no need to create an add or save action as event out records are only
viewed and deleted.

Page 92 of 108

CHAPTER 6. OTHER TICKETS AND TOOLS

extaccess fields for eventout

Notes.
There is no established standard or convention for eventout web services, nor is
there likely ever to be one. There is no reason to hide any fields from view either,
so in this example we have mapped every field.
More importantly, it is hard to imagine any upgrade which would affect this
extaccess record, so even sites with concerns about stepping away from an out-
of-the-box solution need not be too worried.
Notice that the automatically-created sysmodcount, sysmodtime and sysmoduser
can also be made available via web services.
Of course, for the eventout table, every record will have a sysmodcount of 1 since
after creation they only ever get deleted!

Page 93 of 108

6.4. CREATING A MAILER INTERFACE

eventout WSDL

Notes.
The resulting WSDL is available as soon as the definition is saved.
And of course, with Perl, there is no compilation of WSDL to code required, so
you are good to write your application immediately!
Note that the evsysseq field (which is a key on the eventout table is automatically
used as an index for queries.

Page 94 of 108

CHAPTER 6. OTHER TICKETS AND TOOLS

But what do these fields mean...?

• Find a format which contains these fields (e.g. with
Database Manager

• Try the context help (F1)

• Try the help generally

• Try the HP ART and EUT content

• Reverse engineer

• Guess

Notes.
Sometimes fields are obvious. Many times, the most obscure fields were used
once many versions ago and are only maintained for backward compatibility.
Sadly, guessing is often the only option. Looking at established solutions in
Connect-IT are often inadequate as it will usually use non-published APIs.

Page 95 of 108

6.4. CREATING A MAILER INTERFACE

Some eventout answers

evsysseq Sequence number. Primary key

evtype Email, mail, page, etc.

evsyssep Separator character for the information field

evfields Details of message to send; five fields: email, opera-
tor, name, subject, body.

Notes.
For example, if evsyssep is the ^ character, evfields might be:

caffrey.aaron@advantage.comˆfalconˆAaron.CaffreyˆYour HP Service
Manager password has been updated by falcon. It was changed on
07/20/12 04:44:00.ˆYour HP Service Manager password has been updated
by falcon. It was changed on 07/20/12 04:44:00.

Page 96 of 108

CHAPTER 6. OTHER TICKETS AND TOOLS

Exercise

Exercise: fetching and deleting event out records

Notes.
Use the content in the last few pages to:

• Create a WSDL definition for the eventout table

• Write a Perl program to:

1. Fetch a list of eventout sequence numbers
2. Retrieve the event out record associated with that sequence number
3. If it is an email, split the evfields value using the evsyssep character.
Delete the eventout record.

For a bonus, use Net::SMTP or equivalent to send the email that you have split.
Add some fancy HTML as well.
For an extra bonus, update the Notifications in Service Manager to send a “page”.
Modify your program to turn these “page” records into an SMS. Ask your in-
structor for an SMS gateway you can use.

Page 97 of 108

7
Techniques

98

CHAPTER 7. TECHNIQUES

7.1 Performance

Performance

Always constrain your search on the following tables:

probsummary Bad – you will have many incidents.

problem If paging is turned on, very, very bad – you will
have much incident history. (If paging is off, you will
get nothing)

device You will have many computers

contact You will have many contacts

incidents Unless you don’t use the Service Desk module

activity

Notes.
Unconstrained searches on these tables are costly and very slow.
Depending on the size of the organisation, the operator table may be very large
as well – particularly if the classic Employee Self-Service interface has been de-
ployed.

Page 99 of 108

7.1. PERFORMANCE

Searching prefixes and tricks

SOAP-initiated searches use the same code path as user-
initiated searches.

Exact match (not prefix only)

> Search for a numeric field greater than supplied model
value.

* Anywhere in the field

Notes.

Page 100 of 108

CHAPTER 7. TECHNIQUES

Being gentle with big tables

• sysmodtime is your friend. Search for changes since your
last call.

• Search for newer incidents – e.g. >IM123425

• Create a trigger or format control to log changes to an-
other table

• Query the activity table for BP4SM audit information.

Notes.
The mobility client access the activity table – look at MobilityIncidentJournal1.

Page 101 of 108

7.2. TABLES

7.2 Tables

A brief list of common tables

See notes for standard out-of-the-box tables.

Notes.

A few unimportant tables have been left off for brevity. The most important are
in bold.

Object Name Table Name Description
ActiveSLA slaactive Current active service level

agreements
Approval Approval Pending approvals (e.g. for

normal changes)
ApprovalLog ApprovalLog History of approvals given
Cart svcCart Service Catalogue carts. Used

by the Flash-based self-service
portal

CartItem svcCartItem Service Catalogue carts items.
Used by the Flash-based self-
service portal

CatalogByLanguage svcCatLanguage Languages supported by the
service catalogue

CatalogDetail svcCatDetail Catalogue contents. Used
by the Flash-based self-service
portal

CatalogItem joinsvcDisplay Catalogue contents. Used
by the Flash-based self-service
portal

Change cm3r All changes on the system.
ChangeIIA cm3r All changes, alternate API.
ChangeOperatorInformationcm3roperatorinfo Information about operator

profiles for change
ChangeRC cm3r Change API as used by release

control
ChangeTask cm3t All change tasks.
ChangeTaskOperatorInformationcm3roperatorinfo Information about operator

profiles to change tasks
ChangeTaskRC cm3t Change API as used by release

control
Company company Access to the company table.

Especially important for or-
ganisations running in multi-
company mode.

Page 102 of 108

CHAPTER 7. TECHNIQUES

Object Name Table Name Description
Contact contacts Access to the contents table.

Used in almost all organisa-
tions to populate from HR
databases.

Currency currency The service catalogue and re-
quest modules (not the service
requre module) can operate in
multiple currencies.

CurrencyConvert curconvert The service catalogue and re-
quest modules (not the service
requre module) can operate in
multiple currencies. This pro-
vides an API for updating ex-
change rates.

Delegation ApprovalDelegation Who has delegated their ap-
provals, to whom, and for how
long.

Department dept The departmental table. Very
important for identifying who
is subscribed to what service.

Device device All configuration items, in-
cluding business services.

DisplayDevice joindisplaydevice Information about desktop
monitors.

GlobalLists globallists You can modify global lists ex-
ternally!

Inbox inbox The to-do list that operators
see on login.

Incident probsummary Incident table
IncidentwithoutJournalUpdatesprobsummary Access to create and update in-

cidents without having to sup-
ply a journal update.

InstalledSoftware pcsoftware Installed software.
Interaction incidents Service Desk tickets, including

service requests.
InteractionApprovalCountsvcInteractionApprovalCountService Catalogue Items can

have approvals.
InteractionInbox svcInteractionInbox Service Catalogue items can

have approvals.
InteractionInfo incidents Alternate incidents API.
KMAttachments kmattachments Knowledge management at-

tachments.
Knowledge kmdocument Knowledge management doc-

uments
KnowledgebaseErrors kmknowledgebaseerrorsKnowledge management doc-

uments derived from known
errors.

Page 103 of 108

7.2. TABLES

Object Name Table Name Description
KnowledgebaseUpdateskmknowledgebaseupdatesDocuments which have been

submitted for indexing but
have not yet been processed.

Location location Contact locations
MainFrame joinmainframe Database of mainframes in the

organisation
Model model The models of computer, fur-

nishings, etc. in the system.
Operator operator All operators
Operator700 operator Backward-compatibility inter-

face
Operators svcCatOperatorList Used by Flash-based self ser-

vice catalogue.
Problem rootcause Access to the problems table
Relationship cirelationship Access to the relationships

between Configuration Items
(e.g. this CI runs on this other
CI).

SLA sla All service level agreements
SLAResponse slaresponse SLA response success levels
SRCGlobalLists globallists Used by SRC.
SRCInteraction incidents Used by SRC.
Vendor vendor Companies that we buy from.

See also “model”
bpreleaseinfo bpreleaseinfo To be able to identify the cur-

rent BP4SM version. (BP4SM
only).

civisualizationcat civisualizationcat Visualiation information
ucmdbApplication joinapplication Interface for UCMDB
ucmdbBusinessServicejoinbizservice Interface for UCMDB
ucmdbComputer joincomputer Interface for UCMDB
ucmdbNetwork joinnetworkcomponentsInterface for UCMDB
ucmdbPrinter joinofficeelectronics Interface for UCMDB

Page 104 of 108

CHAPTER 7. TECHNIQUES

The mobility client

Even if the mobility client is not licensed, these APIs are
available and are unlikely to change in any future version.
Most of the fields are self-explanatory.

Notes.

Object Name Table Name
MobilityApproval1 Approval
MobilityChange1 cm3r
MobilityChangeByFields1 getrecordfieldsbykey
MobilityChangeGroups1 cm3groups
MobilityChangeJournal1 activitycm3r
MobilityChangeJournalType1 activitytype
MobilityChangeOperatorInformation1 cm3roperatorinfo
MobilityChangeTask1 cm3t
MobilityChangeTaskCategory1 cm3tcategory
MobilityChangeTaskOperatorInformation1 cm3roperatorinfo
MobilityChangesAwaitingApproval1 mobilitychmwtap
MobilityChangesAwaitingApprovalCount1 mobilitycountone
MobilityChangesAwaitingApprovalQuery1 mobilityquery
MobilityChangesInAssignmentGroups1 changesinassignmentgroup
MobilityChangesInAssignmentGroupsCount1 mobilitycounttwo
MobilityChangesInAssignmentGroupsQuery1 mobilityquery
MobilityContact1 contacts
MobilityGlobalList1 wsdlgloballist
MobilityIncident1 probsummary
MobilityIncidentAssignmentGroups1 assignment
MobilityIncidentByFields1 getrecordfieldsbykey
MobilityIncidentClosureCode1 probcause
MobilityIncidentJournal1 activity
MobilityIncidentJournalType1 activitytype
MobilityIncidentOperatorInformation1 incidentoperatorinfo
MobilityIncidentsAssignedToMeCount1 mobilitycounttwo
MobilityIncidentsInAssignmentGroups1 incidentsinassignmentgroups
MobilityIncidentsInAssignmentGroupsCount1 mobilitycounttwo
MobilityIncidentsInAssignmentGroupsQuery1 mobilityquery
MobilityLogin1 mobilityoperatorinfo
MobilityLogout1 mobilitylogout
MobilityMassChangeOperatorInformation1 mobilityrecopinfo
MobilityMassChangeTaskOperatorInformation1 mobilityrecopinfo
MobilityMassIncidentOperatorInformation1 mobilityrecopinfo
MobilityOperator1 operator

Page 105 of 108

Index

106

Index

authorization, 36, 37
base64, 30, 37
Blueprint for Service Manager, see BP4SM
BP4SM, 78
BPEL, 16
Business Process Execution Language,

see BPEL
change, 53, 61, 62, 64, 65, 67, 70, 76,

78–80
CIT, 91
Connect-IT, 91
Content-Length, 10
default ns, 34
Document Object Model, see DOM
DOM, 41
Email from Service Manager, 90
eventout, 90–94
evsysseq, 94
exercise, 28, 50, 67, 83, 97
extaccess, 27, 87, 89, 93
eXtensible Markup Language, see XML
HP Service Manager, see SM
HTML, 41
HTML POST action, see POST
HTTP, 4, 8–11, 37
HyperText Markup Language, see HTML
HyperText Transfer Protocol, see HTTP
incident, 13, 16, 22, 28, 53, 56, 62, 63,

67, 77, 79, 81–83, 97
interaction, 53–56, 58–60, 63–65, 67,

76, 79, 82

ITIL, 87, 88

Javascript, 41, 89

load balancer, 26

mainframe, 90
MIME::Base64, 30
module, 11, 15, 26, 30–32, 34, 36, 37,

46, 47, 71

Net::SMTP, 97
notification, 90
Notify Method, 90

Perl, 11
Perl module, see module
Perl package, see module
Perl::Critic, 34
port, 26
Port 13080, 26
port 8080, 26
POST, 8–10, 34
pragma, 34
proxy, 34

Remote Procedure Call, see RPC
REpresentational State Transfer, see REST
REST, 26
RPC, 4, 5, 10, 35

service, 34
Service Manager, see SM
Simple Object Access Protocol, see SOAP
SM, 7, 10, 11, 14, 16, 26, 28, 33, 37, 50,

52, 53, 62, 67, 78, 85–87, 89
SOAP, 4, 7, 9–16, 24, 26, 30

107

INDEX

SOAP Object Model, see SOM
SOAP::Data, 40, 48–50
SOAP::Lite, 26, 30, 32, 34, 36, 40
SOAP::SOM, 41
SOAP::WSDL, 30
SOAPAction, 9–11, 24, 40
SOM, 41
strict, 34
sysmodcount, 93
sysmodtime, 93
sysmoduser, 93

tomcat, 26
tso, 90

warnings, 34
Web Services Definition Language, see

WSDL
Web Services Description Language, see

WSDL
web tier, 26
WSDL, 4, 16–26, 28, 30, 34, 39, 40, 74,

89

XML, 4, 6, 7, 9–11, 16
XML namespace, see xmlns
xmlns, 12, 13, 15

Page 108 of 108

