
Lazy Greg’s List of OVO Wishes

Greg Baker (gregb@ifost.org.au)

June 13, 2007

Contents

1 log4j / log4c opcmsg appenders 1

2 Use a more Linux-like agent install pro-
cess 2

3 Cross-platform installs 2

4 Inverted statistical thresholds and pro-
jected statistical thresholds 2

5 Extra Performance Agent metric 2

6 Policy group inheritance 3

7 Shared IMAP Interface for viewing
messages 3

8 Consolidated command broadcasting
output 3

9 Deduce correlations 4

10 Bayesian rules in logfile poli-
cies/templates 4

11 Find logfiles automatically 4

11.1 Configuration file watcher 5

11.2 Executables and shared libraries watcher 5

Introduction

I like to call myself an experienced consultant and
instructor on HP’s OpenView suite – close to 10 years
now. When I’m pitching for a job I like to call myself
“one of the leading OpenView experts in the Asia-
Pacific region”.

I’ve also worked at Google for a while, which is where
I started to form crazy ideas about automated sys-
tem and network management systems for very large
networks.

I’m quite happy to implement some of these ideas for
money (hint, hint!), but I’m also happy for them to be
taken up by someone else in exchange for unlimited
bragging rights (“see that feature – I suggested it!”)
and a warm glow of making the world a better place.

Some of these ideas aren’t particularly coherent, and
I’m writing this while teaching a class so it will be a
bit disconnected. Ask me1 if anything doesn’t make
sense and needs clarification.

1 log4j / log4c opcmsg appen-
ders

log4j doesn’t need much of an introduction. It’s a
nice way of being able to control where logs go – out
to files, or out to a socket.

It would be nice if OVO shipped with Java and/or
C libraries so that it could get log4j to send log
messages out as opcmsg messages.

1gregb@ifost.org.au

1

And since the whole world doesn’t use Java, doing
the same for log4c and log4perl and so on might
be nice.

2 Use a more Linux-like agent
install process

While it’s nice to have the consistent opc inst script
across all Unixes, it doesn’t make sense on Linux.

OVO/U has an Apache installed; OVO/W modifies
the IIS setup. We just need also to map a URI to the
directory where the agent software is installed.

Then the install script becomes something like:

rpm --install http://mgtsvr/lxagt/agent.rpm

While we’re at it, do a proper .deb format for Debian
packages. Yes, I know that’s not according to the
LSB standard; yes I know that Debian has essentially
zero impact on the market. But it would make more
sense, and Ubuntu will be a big player.

For Debian/Ubuntu, the install script should be
something like:

echo deb http://mgmtsvr/lxagt debs\
> /etc/apt/sources.list

apt-get update
apt-get install ovoagent

It makes a big difference when the OVO server is
patched; it makes it much easier to keep all the agent
software versions in sync.

And, maybe it’s worth shipping the agent with a
static libc. Yes it’s a bit wasteful not linking to the
shared library version of it, but it’s better to waste
some disk and memory but always work and always
install cleanly. Some story for libstdc++.

3 Cross-platform installs

• Unix OVO should be able to install to Windows
boxes via smbclient.

• MS-Windows should be able to install to Unix
boxes using SSH.

4 Inverted statistical thresh-
olds and projected statistical
thresholds

This is mainly of interest for disk usage, but it ap-
plies wherever we have a measurement of a limited
resource.

I want to be able to create a threshold/measurement
template/policy as usual, but specify a rule that trig-
gers “when the value gets within 4.5 standard devi-
ations of 100%” (another way of saying roughly the
same thing is “when the probability of the next data
point being at 100% gets greater than 1 chance in a
million”).

This makes filesystem capacity monitoring easy –
filesystems which do not change in size much (e.g.
/usr on HP-UX) will have a very small standard de-
viation, so could sit at 95% full without that being
an alarm-worthy problem. A filesystem which does
change in size rapidly will have a large standard de-
viation, and would alarm long before 95% full.

To do this will require (I think) storing sum-of-
squares data as well as the data values themselves,
so we can kill a second problem at the same time –
filesystem which grow with time. I would like to spec-
ify a rule that triggers “when there is a 1% chance
that a data point in the next 2 weeks will be 100”.
This is just a linear regression on the data, and pro-
jecting it out.

5 Extra Performance Agent
metric

In an era of disk arrays which have cache, measuring
the number of bytes in/out to a LUN tells us very
little, and the number of reads or writes is not much
help either. Perhaps they are all landing in array

2

cache (and so all is good) or perhaps none of them
are (not good).

So here’s the metric that would help. . . in the last
$TIMEINTERVAL, what percentage of blocks in this
filesystem were modified?

6 Policy group inheritance

Wouldn’t it be nice to set a default message group for
a whole policy group? Or set other kinds of defaults?

(Actually, I’m not fussed about this one, but a cus-
tomer requested it very politely.)

7 Shared IMAP Interface for
viewing messages

Some staff don’t have the screen space to run an extra
program. Or they forget to start up opc. Or what-
ever. But they are likely to have their email client
open.

So the OVO server should run an IMAP/IMAPS
server, but instead of presenting internet email mes-
sages, it presents active OVO messages in a very
email-like way.

e.g. a critical message from syd42 (application
name=“oracle”, object name=“production”, mes-
sage text=“Out of table space”) would be presented
as if it were an email:

From: oracle!production
To: syd42
Subject: Out of table space
Priority: high

Out of table space.

Or you could play games with IMAP folders being the
different message groups. When a user deletes this
pseudo-email that either acknowledges the message
or just hides it for this user, depending on who the
user’s account has been set up.

The advantage of this approach is that

• Managers who don’t know anything other than
Outlook can still have some idea of what is going
on.

• Sysadmin geeks who refuse to use anything other
than insert obscure operating system here can
use their favourite mail client to get notified
about things.

• It becomes possible to drag a message to become
a To-Do item.

When I’m feeling very silly, I also wonder about a jab-
ber interface to the unacknowledged messages store.

8 Consolidated command
broadcasting output

The current output from a broadcasted command
(i.e. the one program run on many computers at the
same time) gets unwieldy very quickly. No-one has
the patience to read through the same output text
50 times; so that limits commands to less than 50
machines, unless the program has almost no output.

Here’s what I’d like to see:

ivm211, ivm212, ivm213 produced:

Permission denied.

ivm221, ivm222, ivm223, ivm224, ivm225

Sending glub daemon a TERM signal.

Sending glub daemon a KILL signal.

Starting glub daemon.

Glub daemon started | ALL EXCEPT FOR ivm225

Glub daemon running; config loaded.| ALL EXCEPT FOR ivm225

Glub daemon cannot start. No config| ivm225

Maybe colour highlighting would work better.

Anyway, I’ve done some thinking about algorithms
to generate this kind of output. Ping me if you’re
interested.

3

9 Deduce correlations

Every night OVO should run a job searching for pairs
of events that regularly occur together.

If every time event A happens, an event B happens
in the next 30 minutes, that suggests that A causes
B, or that B is just another test for A.

If they have the same service ID, it suggests a re-
dundant message (and we could let the administra-
tor know somehow that this would be a good ECS
correlation to create to suppress one or the other).

If they have different service IDs, it suggests that
there should be a “propagate most critical” calcula-
tion rule on one of them.

10 Bayesian rules in logfile
policies/templates

The point of the message browser is to highlight the
important events going on in the customer’s systems
so that operators and sysadmins can respond. They
know what messages are important and which are
not.

Here is my shortlist of words which indicate – with
very high probability – a message which a sysadmin
will care about if they appear in a line in a log file.

• No as a word on its own

• not

• didn’t, couldn’t, isn’t

• denied, failed

• out of, too

So why not start with that collection, and then let
the operator indicate how well it is working? It works
pretty well with email spam. . . .

11 Find logfiles automatically

I was so disappointed with log file discovery in
OVOW 7.5 – I was expecting it to appeal to my lazy
side.

Here’s how an agent can identify every log file on a
system:

1. Look at /etc/syslogd.conf and mark anything
listed there as being a real log file.

2. Look at /etc/logrotate* and figure out any file
names that are just renames and compressions
of real log files. Mark the compressed/renamed
files as boring, and remember the real log files.

3. Traverse all local filesystems looking for ordinary
files (i.e. not directories, not fifos, etc.), which
we haven’t already marked as being a log file,
boring, a configuration file an executable or a
shared library.

• Store checksums and sizes of all such files
which are not directories, not fifos, not
marked as being log files, not marked as
boring, not marked as a configuration file,
and not marked as an executable or shared
library.

• Mark any executable programs and shared
libraries as being such.

• Mark files ending in .png, .gif, .jpg,
.html etc. – which happen to be in the
format their filename suggests – as being
boring.

4. Wait a while (auto adjust the interval depending
on how many new log files we’ve been discover-
ing – slow down and wait much longer when we
haven’t seen a new log file in a long time).

5. Traverse the filesystem again, and consider all
files that have increased in size. Checksum just
the first N bytes of those files (where N is the
size it was when we last looked at it), and see if
the checksum is the same.

4

• If it is the same, then mark this as a log
file.

• If it is not the same, mark this file as boring.

• If a file gets smaller, look for a file in the
same directory with the same name, but
with a number or date appended, and try
checking that file’s first N bytes.

• If the checksum is different, and there are
non-linguistic combinations (e.g. two punc-
tuation characters together beside a non-
ascii character), then it’s probably a data
file. Mark it as boring.

• If the checksum is different, but it is a plain
text file, then mark it as a configuration file.

6. Go back to step 5.

OVO could ship with a subagent that did all the
above, and a policy which uses Bayesian rules (from
idea 10 on page 4). This would produce a genuine
“works-right-now” solution – you could install it and
do no other configuration but still end up with a use-
ful systems management solution.

11.1 Configuration file watcher

If idea 11 (page 4) is implemented, then as a side-
effect, configuration files get automatically identified.
A separate subagent could monitor configuration files
for changes and do several things when a change is
noticed:

• Log the change in a version control system (e.g.
subversion). SuSE Linux has a cfg2scm program
for this, for example.

• Send a message to the browser.

• Log some kind of “match-me” ticket in a change
control system, with an alert generated if this
configuration change can’t be connected to a
change control request number.

11.2 Executables and shared libraries
watcher

Taking idea 11 (page 4) a bit further, why not mon-
itor executables and shared libraries for changes?

When a change occurs:

• Bundle all the changed files (including configu-
ration ones) together in an RDP (remote deploy-
ment pack) object, so that it could be repeated
precisely on other machines.

• Make sure that there is a change control ticket
associated with the job to apply patch.

5

